Supporting data for "fastBMA: Scalable Network Inference and Transitive Reduction"

Dataset type: Software
Data released on August 07, 2017

Hung LH; Raftery AE; Shi K; Wu M; Yeung KY; Young WC (2017): Supporting data for "fastBMA: Scalable Network Inference and Transitive Reduction" GigaScience Database.


Inferring genetic networks from genome-wide expression data is extremely demanding computationally. We have developed fastBMA, a distributed, parallel and scalable implementation of Bayesian model av-eraging (BMA) for this purpose. fastBMA also includes a computationally efficient module for eliminat-ing redundant indirect edges in the network by mapping the transitive reduction to an easily solved shortest-path problem.
We evaluated the performance of fastBMA on synthetic data and experimental genome-wide time-series yeast and human datasets. When using a single CPU core, fastBMA is up to 100 times faster than the next fastest method, LASSO, with increased accuracy. It is a memory efficient, parallel and distributed application that scales to human genome wide expression data. A 10,000-gene regulation network can be obtained in a matter of hours using a 32-core cloud cluster (2 nodes of 16 cores).
fastBMA is a significant improvement over its predecessor ScanBMA. It is more accurate and orders of magnitude faster than other fast network inference methods such as one based on LASSO. The improved scalability allows it to calculate networks from genome scale data in a reasonable timeframe. The transitive reduction method can improve accuracy in denser networks. fastBMA is available as code (M.I.T. license) from GitHub (, as part of the updated networkBMA Bioconductor package ( and as ready-to-deploy Docker images (

Additional details

Read the peer-reviewed publication(s):

Hung, L.-H., Shi, K., Wu, M., Young, W. C., Raftery, A. E., & Yeung, K. Y. (2017). fastBMA: scalable network inference and transitive reduction. GigaScience, 6(10), 1–10. doi:10.1093/gigascience/gix078

Additional information:

Accessions (data not in GigaDB):

AE: E-MTAB-412
GEO: GSE52529
SYN: SYN2825304

File NameSample IDData TypeFile FormatSizeRelease Date 
ReadmeTEXT2.13 KB2017-08-03
GitHub archivearchive2.11 MB2017-08-03
Displaying 1-2 of 2 File(s).
Funding body Awardee Award ID Comments
National Institutes of Health KY Yeung U54HL127624
National Institutes of Health AE Raftery R01HD054511
National Institutes of Health AE Raftery R01HD070936
Microsoft Azure for Research Awards KY Yeung
Microsoft Azure for Research Awards LH Hung
Date Action
August 7, 2017 Dataset publish
October 2, 2017 Manuscript Link added : 10.1093/gigascience/gix078